Characterization of Durango Apatite

M Balcázar¹, A López¹, A Hernández¹, R Corona², U A Glasmacher³, G A Wagner³

¹Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, México D.F., 11801, México.

²Instituto de Geología, Universidad Autónoma de México, Apartado Postal 70-296, México D.F. 04510, México.

³Forschungsstelle Archäometrie der Heilderberg Akademie der Wissenschaften am Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heilderberg, Germany.

Batches of apatite samples, collected from four places at the Cerro de Mercado, Durango were characterized using neutron activation analysis, x-ray diffraction, scanning electron microscopy and fission track analysis.

Neutron activation analysis gave a uranium concentration (ppm) of 11.32 ± 1.12 , 7.00 ± 0.69 , 12.00 ± 1.08 and 13.00 ± 1.39 for each one of the four places. X-ray diffraction showed mainly flourapatite composition, which was also determined by x-ray analysis at the scanning electron microscope.

A mean track length of 15.3 ± 0.9 µm was determined for confined horizontal spontaneous fission-tracks. This value is the average of more than 800 fission tracks, revealed by track-in-track technique using fission fragments from ²⁵²Cf source, for creating vertical channels in apatite. Apatite annealing for one hour at 367 C and 314 C gave a track length reduction of 80% (12.9 ± 0.7 µm) and 60% (9.6 ± 0.9 µm) as reported by other authors.

Good quality characterized apatite crystals are available for fission track workers.

Miguel Balcázar
Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, México D.F., 11801, México.

mbg@nuclear.inin.mx
Tel 55 5329 7237
Fax 55 5329 7332